Application of Machine Learning Approaches in Rainfall-Runoff Modeling (Case Study: Zayandeh_Rood Basin in Iran)

Authors

  • Ali Talebi Associate Professor, Faculty of Natural Resources, Yazd University, Iran
  • Javad Mahjoobi 2Water Recourse Management Company, Yazd Regional Water Authority, Iran
Abstract:

Run off resulted from rainfall is the main way of receiving water in most parts of the World. Therefore, prediction of runoff volume resulted from rainfall is getting more and more important in control, harvesting and management of surface water. In this research a number of machine learning and data mining methods including support vector machines, regression trees (CART algorithm), model trees (M5 algorithm) and artificial neural networks have been used to simulate rainfall- runoff process in Zayandeh_rood dam basin in Iran. Data used in this research included 9 years of daily precipitation, minimum temperature, maximum temperature, mean temperature, mean relative humidity of daily times 6:30, 12:30 and 18:30 and run off. A number of 3294 lines of data were totally used, and simulations were carried out in two different conditions: without previous run off data as input vectors (M1 condition), and with previous runoff data as input vectors of the models (M2 condition). Results show that machine learning techniques used in this research are not able to present acceptable predictions of runoff in M1 condition (without previous runoff data). However, predictions are considerably improved when previous runoff data are used as input beside other inputs (M2 condition). Between the models used in this research support vector machines (SVM) presented the most accurate results, as the values of RMSE for results presented by SVM, regression tree, model tree and artificial neural network are 2.4, 6.71, 3.2 and 3.04, respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Using Hybrid ARIMAX-ANN Model for Simulating Rainfall - Runoff - Sediment Process Case Study: Aharchai Basin, Iran

The need for accurate modeling of rainfall-runoff-sediment processes has grown rapidly in the past decades. This study investigates the efficiency of black-box models including Artificial Neural Network (ANN) and Autoregressive Integrated Moving Average with eXogenous input (ARIMAX) models for forecasting the rainfall-runoff-sediment process. According to the complex behavior of the rainfall-ru...

full text

application of brand personality scale in automobile industry: the study of samand’s brand personality dimensions

این تحقیق شخصیت برند سمند را در ایران با استفاده از مدل پنج بعدی آکر (1997) بعنوان یک چهارچوب بطور توصیفی سنجیده است. بنابر این چهارچوب که دراصل در 42 جزء (42 ویزگی شخصیتی) ودر پنج بعد شخصیتی طراحی شده بود ودر کشورها وصنایع مختلف آزموده شده بود, پرسنامه به زبان فارسی ترجمه شده و با استفاده از روشهای ترجمه معکوس و مصاحبه عمیق با 12 متخصص ایرانی به 38 جزء کاهش یافت. و نظرسنجی ای در پنج نمایندگی ا...

15 صفحه اول

the translators agency and ideological manipulation in translation: the case of political texts in translation classes in iran

در این تحقیق به نقش واسطه ای مترجم در ایجاد تغییرات ایدئولوژیک در ترجمه متون سیاسی پرداخته شده است. بدین منظور محقق متنی سیاسی در خصوص ادعاهای آمریکا در مورد برنامه هسته ای ایران را انتخاب کرد. این متن از سایت spacewar.com انتخاب شد که دارای ایدئولوژی مغرضانه در مورد برنامه هسته ای ایران است. سپس یک گروه 30 نفره از دانشجویان کارشناسی ارشدرشته مترجمی زبان انگلیسی دانشگاه شیخ بهایی انتخاب شدند. ا...

15 صفحه اول

Rainfall estimation by Remote Sensing for conceptual rainfall-runoff modeling in the Upper Blue Nile basin

...........................................................................................................iv Acknowledgement................................................................................................v Table of contents.................................................................................................vi List of figures.............................................

full text

Application of GIS in Modeling Rainfall Erosivity Factor (Case Study: Gabric Watershed- Hormozgan Province East South)

If other factors are held constant erosion, soil loss rate is directly proportional to the amount of rain erosion. Various measures have been proposed so far in the world, depending on geographic location, scale, local conditions and the type of measurement are different. A review of studies conducted worldwide and the limited rain gauge equipped, modified Fournier index is calculated based on ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 51  issue 2

pages  293- 310

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023